1. Relations \& Functions - Important Questions $B$

## 1. Relations and Functions

## 1 mark Questions

1. If $n(A \times B)=6$ and $A=\{1,3\}$ then $n(B)$ is

SEP-21
(A) 1
(B) 2
(C) 3
(D) 6
2. $A=\{a, b, p\}, B=\{2,3\}, C=\{p, q, r, s\}$ then $n[(A \cup C) \times B]$ is

PTA-3
(A) 8
(B) 20
(C) 12
(D) 16
3. If $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ and $D=\{5,6,7,8\}$ then state which of the following statement is true

SEP-20
(A) $(\boldsymbol{A} \times \boldsymbol{C}) \subset(\boldsymbol{B} \times \boldsymbol{D})$
(B) $(B \times D) \subset(A \times C)$
(C) $(A \times B) \subset(A \times D)$
(D) $(D \times A) \subset(B \times A)$
4. If there are 1024 relations from a set $A=\{1,2,3,4,5\}$ to a set $B$, then the number of element in $B$ is
(A) 3
(B) 2
(C) 4
(D) 8

PTA-2, JUL-22
5. The range of the relations $R=\left\{\left(x, x^{2}\right) \mid x\right.$ is a prime number less than 13$\}$ is

PTA-4, JUL-22
(A) $\{2,3,5,7\}$
(B) $\{2,3,5,7,11\}$
(C) $\{4,9,25,49,121\}$
(D) $\{1,4,9,25,49,121\}$
6. If the ordered pairs $(a+2,4)$ and $(5,2 a+b)$ are equal then $(a, b)$ is

PTA-6, MAY-22
(A) $(2,-2)$
(B) $(5,1)$
(C) $(2,3)$
(D) $(3,-2)$
7. Let $n(A)=m$ and $n(B)=n$ then the total number of non-empty relations that can be defined from $A$ to $B$ is
(A) $m^{n}$
(B) $n^{m}$
(C) $2^{m n}-1$
(D) $2^{m n}$
8. If $\{(a, 8),(6, b)\}$ represents an identity function, then the value of $a$ and $b$ respectively.

PTA-1
(A) $(8,6)$
(B) $(8,8)$
(C) $(6,8)$
(D) $(6,6)$
9. Let $A=\{1,2,3,4\}$ and $B=\{4,8,9,10\}$. A function $f: A \rightarrow B$ given by $f=\{(1,4),(2,8),(3,9),(4,10)\}$ is a
(A) Many-one function
(B) Identity function
(C) One-to-one function
(D) Into function
PTA-4
10. If $f(x)=2 x^{2}$ and $g(x)=\frac{1}{3 x}$, then $f \circ g$ is
(A) $\frac{3}{2 x^{2}}$
(B) $\frac{2}{3 x^{2}}$
(C) $\frac{2}{9 x^{2}}$
(D) $\frac{1}{6 x^{2}}$
11. If $f: A \rightarrow B$ is a bijective function and if $n(B)=7$, then $n(A)$ is equal to

PTA-2
(A) 7
(B) 49
(C) 1
(D) 14
12. Let $f$ and $g$ be two functions given by
$f=\{(0,1),(2,0),(3,-4),(4,2),(5,7)\}$
$g=\{(0,2),(1,0),(2,4),(-4,2),(7,0)\}$ then the range of $f \circ g$ is
(A) $\{0,2,3,4,5\}$
(B) $\{-4,1,0,2,7\}$
(C) $\{1,2,3,4,5\}$
(D) $\{0,1,2\}$
13. Let $f(x)=\sqrt{1+x^{2}}$ then
(A) $f(x y)=f(x) \cdot f(y)$
(B) $f(x y) \geq f(x) \cdot f(y)$
(C) $\boldsymbol{f}(\boldsymbol{x} \boldsymbol{y}) \leq \boldsymbol{f}(\boldsymbol{x}) \cdot \boldsymbol{f}(\boldsymbol{y})$
(D) None of these
14. If $g=\{(1,1),(2,3),(3,5),(4,7)\}$ is a function given by $g(x)=\alpha x+\beta$ then the values of $\alpha$ and $\beta$ are
(A) $(-1,2)$
(B) $(2,-1)$
(C) $(-1,-2)$
(D) $(1,2)$

PTA-6
15. $f(x)=(x+1)^{3}-(x-1)^{3}$ represents a function which is
(A)linear
(B) cubic
(C) reciprocal
(D) quadratic

## 2 mark Questions

1. Find $\boldsymbol{A} \times \boldsymbol{B}, \boldsymbol{A} \times \boldsymbol{A}$ and $\boldsymbol{B} \times \boldsymbol{A}$ (iii) $\boldsymbol{A}=\{\boldsymbol{m}, \boldsymbol{n}\} ; \boldsymbol{B}=\varnothing$

$$
\text { (iii) } \begin{aligned}
\boldsymbol{A} & =\{\boldsymbol{m}, \boldsymbol{n}\} ; \boldsymbol{B}=\varnothing \\
A \times B & =\{\quad\} \\
A \times A & =\{m, n\} \times\{m, n\} \\
& =\{(\boldsymbol{m}, \boldsymbol{m}),(\boldsymbol{m}, \boldsymbol{n}),(\boldsymbol{n}, \boldsymbol{m}),(\boldsymbol{n}, \boldsymbol{n})\} \\
B \times A & =\{\quad\}
\end{aligned}
$$

2. Let $A=\{1,2,3\}$ and $B=\{x \mid x$ is a prime number less than 10$\}$. Find $A \times B$ and $B \times A$.
```
\(A=\{1,2,3\}\)
\(B=\{x \mid x\) is a prime number less than 10\(\}\)
    \(=\{2,3,5,7\}\)
    \(A \times B=\{1,2,3\} \times\{2,3,5,7\}\)
        \(=\{(1,2),(1,3),(1,5),(1,7),(2,2),(2,3)\),
            \((2,5),(2,7),(3,2),(3,3),(3,5),(3,7)\}\)
\(B \times A=\{2,3,5,7\} \times\{1,2,3\}\)
        \(=\{(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(5,1),(5,2),(5,3),(7,1),(7,2),(7,3)\}\)
```

3. Let $A=\{1,2,3,4, \ldots, 45\}$ and $R$ be the relation defined as "is square of a number" on $A$.Write $R$ as a subset of $A \times A$. Also, find the domain and range of $R$.

Given $A=\{1,2,3,4, \ldots, 45\}$

$$
A \times A=\{(1,1),(1,2),(1,3),(1,4) \ldots \ldots(45,45)\}
$$

Then, $R$ be the relation defined as is "square of a number" on $A$.
Hence, $R=\{(1,1),(2,4),(3,9),(4,16),(5,25),(6,36)\}$
So $R \subseteq A \times A$
The domain of $R=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}\}$
The range of $R=\{\mathbf{1}, \mathbf{4}, \mathbf{9}, \mathbf{1 6}, \mathbf{2 5}, \mathbf{3 6}\}$
4. A Relation $R$ is given by the $\operatorname{set}\{(x, y) / y=x+3, x \in\{0,1,2,3,4,5\}\}$. Determine its domain and range (PTA-5)
$R=\{(x, y) / y=x+3, x \in\{0,1,2,3,4,5\}\}$
Here domain $(x)=\{0,1,2,3,4,5\}$
Co-domain $(y)=x+3$
$y_{0}=0+3=3, \quad y_{3}=3+3=6$
$y_{1}=1+3=4, \quad y_{4}=4+3=7$
$y_{2}=2+3=5, \quad y_{5}=5+3=8$
$R=\{(0,3),(1,4),(2,5),(3,6),(4,7),(5,8)\}$
Domain $=\{0,1,2,3,4,5\}$
Range $=\{3,4,5,6,7,8\}$
5. Show that the function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(m)=m^{2}+m+3$ is one - one function

The function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
f(m)=m^{2}+m+3
$$

$$
m=1, f(1)=(1)^{2}+1+3=1+1+3=5
$$

$$
m=2, f(2)=(2)^{2}+2+3=4+2+3=9
$$

$$
m=3, f(3)=(3)^{2}+3+3=9+3+3=15
$$

$$
m=4, f(4)=(4)^{2}+4+3=16+4+3=23
$$

Since different elements of $N$ have different images in the codomain the function of $\boldsymbol{f}$ is oneone function.
6. Write the domain of the following real functions
i) $f(x)=\frac{2 x+1}{x-9}$
iii) $g(x)=\sqrt{x-2}$
i) $f(x)=\frac{2 x+1}{x-9}$

If $x=9$ then $f(-9)$ is not defined
Hence $f$ is defined for all real numbers except at $x=9$.
So domain of $f=R-\{9\}$
iii) $g(x)=\sqrt{x-2}$

If $x \in(-\infty, 2) \quad g(x)$ is not real
If $x \in[2, \infty) \quad g(x)$ is real
$\therefore$ the Domain is $[2, \infty)$

## 5 mark Questions

1. Let $A=\{x \in \mathbb{W} \mid x<2\}, B=\{x \in \mathbb{N} \mid 1<x \leq 4\}$ and $C=\{3,5\}$. Verify that
(ii) $\boldsymbol{A} \times(\boldsymbol{B} \cap \boldsymbol{C})=(\boldsymbol{A} \times \boldsymbol{B}) \cap(\boldsymbol{A} \times \boldsymbol{C})$

SEP-21, PTA-5
LHS: $B \cap C=\{2,3,4\} \cap\{3,5\}=\{3\}$

$$
\begin{align*}
A \times(B \cap C) & =\{0,1\} \times\{3\} \\
& =\{(\mathbf{0}, \mathbf{3}),(\mathbf{1}, \mathbf{3})\} \tag{1}
\end{align*}
$$

RHS: $A \times B=\{0,1\} \times\{2,3,4\}=\{(\mathbf{0}, \mathbf{2}),(\mathbf{0}, \mathbf{3}),(\mathbf{0}, \mathbf{4}),(\mathbf{1}, \mathbf{2}),(\mathbf{1}, \mathbf{3}),(\mathbf{1}, \mathbf{4})\}$
$A \times C=\{0,1\} \times\{3,5\}=\{(0,3),(0,5),(1,3),(1,5)\}$
$(A \times B) \cap(A \times C)=\{(0,2),(\mathbf{0}, \mathbf{3}),(0,4),(1,2),(\mathbf{1}, \mathbf{3}),(1,4)\} \cap\{(\mathbf{0}, \mathbf{3}),(0,5),(\mathbf{1}, \mathbf{3}),(1,5)\}$

$$
\begin{equation*}
=\{(\mathbf{0}, \mathbf{3}),(\mathbf{1}, \mathbf{3})\} \tag{2}
\end{equation*}
$$

From (1) and (2),

$$
A \times(B \cap C)=(A \times B) \cap(A \times C)
$$

2. If $A=\{5,6\}, B=\{4,5,6\}, C=\{5,6,7\}$, show that $A \times A=(B \times B) \cap(C \times C)$.
$A \times A=(B \times B) \cap(C \times C)$
LHS: $A \times A=\{5,6\} \times\{5,6\}$

$$
\begin{equation*}
=\{(5,5),(5,6),(6,5),(6,6)\} . \tag{1}
\end{equation*}
$$

RHS:
$B \times B=\{4,5,6\} \times\{4,5,6\}$

$$
=\{(4,4),(4,5),(4,6),(5,4),(5,5)
$$

$$
(5,6),(6,4),(6,5),(6,6)\}
$$

$C \times C=\{5,6,7\} \times\{5,6,7\}=\{(\mathbf{5}, \mathbf{5}),(\mathbf{5}, \mathbf{6}),(5,7),(\mathbf{6}, \mathbf{5}),(\mathbf{6}, \mathbf{6}),(6,7),(7,5),(7,6),(7,7)\}$
$(B \times B) \cap(C \times C)=\{(\mathbf{5}, \mathbf{5}),(\mathbf{5}, \mathbf{6}),(\mathbf{6}, \mathbf{5}),(\mathbf{6}, \mathbf{6})\}$
From (1) and (2), $\boldsymbol{A} \times \boldsymbol{A}=(\boldsymbol{B} \times \boldsymbol{B}) \cap(\boldsymbol{C} \times \boldsymbol{C})$
3. Let $A=\{x \in \mathbb{W} \mid x<2\}, B=\{x \in \mathbb{N} \mid 1<x \leq 4\}$ and $C=\{3,5\}$. Verify that
(i) $A \times(B \cup C)=(A \times B) \cup(A \times C)$
(PTA-2)

$$
A=\{x \in \mathbb{W} \mid x<2\}=\{0,1\}, \quad B=\{x \in \mathbb{N} \mid 1<x \leq 4\}=\{2,3,4\}, \quad C=\{3,5\}
$$

LHS:

$$
\begin{align*}
& B \cup C=\{2,3,4\} \cup\{3,5\}=\{2,3,4,5\} \\
& \begin{aligned}
A \times(B \cup C) & =\{0,1\} \times\{2,3,4,5\} \\
& =\{(\mathbf{0}, \mathbf{2}),(\mathbf{0}, \mathbf{3}),(\mathbf{0}, \mathbf{4}),(\mathbf{0}, \mathbf{5}),(\mathbf{1}, \mathbf{2}),(\mathbf{1}, \mathbf{3}),(\mathbf{1}, \mathbf{4}),(\mathbf{1}, \mathbf{5})\}
\end{aligned}
\end{align*}
$$

RHS:
$A \times B=\{0,1\} \times\{2,3,4\}=\{(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)\}$
$A \times C=\{0,1\} \times\{3,5\}=\{(0,3),(0,5),(1,3),(1,5)\}$
$(A \times B) \cup(A \times C)=\{(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)\} \cup\{(0,3),(0,5),(1,3),(1,5)\}$

$$
\begin{equation*}
=\{(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5)\} \tag{2}
\end{equation*}
$$

From (1) and (2), $\boldsymbol{A} \times(\boldsymbol{B} \cup \boldsymbol{C})=(\boldsymbol{A} \times \boldsymbol{B}) \cup(\boldsymbol{A} \times \boldsymbol{C})$

1. Relations \& Functions - Important Questions $B$
2. Let $A=$ The set of all natural numbers less than $8, B=$ The set of all prime numbers less than 8 ,
$\boldsymbol{C}=$ The set of even prime number, Verify that (i) $(\boldsymbol{A} \cap B) \times \boldsymbol{C}=(\boldsymbol{A} \times \boldsymbol{C}) \cap(B \times C) \quad$ (SEP-20)
$A=$ The set of all natural numbers less than $8=\{1,2,3,4,5,6,7\}$
$B=$ The set of all prime numbers less than $8=\{2,3,5,7\}$
$C=$ The set of even prime number $=\{2\}$
(i) $(\boldsymbol{A} \cap \boldsymbol{B}) \times \boldsymbol{C}=(\boldsymbol{A} \times \boldsymbol{C}) \cap(\boldsymbol{B} \times \boldsymbol{C})$

LHS: $A \cap B=\{1,2,3,4,5,6,7\} \cap\{2,3,5,7\}$

$$
\begin{equation*}
=\{2,3,5,7\} \tag{1}
\end{equation*}
$$

$(A \cap B) \times C=\{2,3,5,7\} \times\{2\}=\{(\mathbf{2}, \mathbf{2}),(\mathbf{3}, \mathbf{2}),(\mathbf{5}, \mathbf{2}),(\mathbf{7}, \mathbf{2})\}$
RHS:

$$
\begin{aligned}
A \times C & =\{1,2,3,4,5,6,7\} \times\{2\} \\
& =\{(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2)\}
\end{aligned}
$$

$B \times C=\{2,3,5,7\} \times\{2\}=\{(2,2),(3,2),(5,2),(7,2)\}$
$(A \times C) \cap(B \times C)=\{(2,2),(3,2),(5,2),(7,2)\}$
From (1) and (2), $(\boldsymbol{A} \cap \boldsymbol{B}) \times \boldsymbol{C}=(\boldsymbol{A} \times \boldsymbol{C}) \cap(\boldsymbol{B} \times \boldsymbol{C})$
5. Let $A=$ The set of all natural numbers less than $8, B=$ The set of all prime numbers less than 8 , $C=$ The set of even prime number, Verify that

$$
\begin{align*}
& \text { (ii) } \boldsymbol{A} \times(\boldsymbol{B}-\boldsymbol{C})=(\boldsymbol{A} \times \boldsymbol{B})-(\boldsymbol{A} \times \boldsymbol{C}) \\
& \text { LHS: } \quad B-C=\{2,3,5,7\}-\{2\}=\{3,5,7\} \\
& \begin{aligned}
A \times(B-C)=\{1,2,3,4,5,6,7\} \times\{3,5,7\}
\end{aligned} \\
& \quad=\{(\mathbf{1}, \mathbf{3}),(\mathbf{1}, \mathbf{5}),(\mathbf{1}, 7),(2,3),(2,5),(2,7),(3,3),(3,5),(3,7),(4,3),(4,5),(4,7), \\
& \quad(5,3),(5,5),(5,7),(6,3),(6,5),(6,7),(7,3),(7,5),(7,7)\} \ldots \ldots . . . . . . .(1)
\end{align*}
$$

RHS: $A \times B=\{1,2,3,4,5,6,7\} \times\{2,3,5,7\}$

$$
=\{(1,2),(1,3),(1,5),(1,7),(2,2),(2,3),(2,5),(2,7),(3,2),(3,3),(3,5),(3,7),(4,2),(4,3)
$$

$$
(4,5),(4,7),(5,2),(5,3),(5,5),(5,7),(6,2),(6,3),(6,5),(6,7),(7,2),(7,3),(7,5),(7,7)\}
$$

$$
A \times C=\{1,2,3,4,5,6,7\} \times\{2\}=\{(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2)\}
$$

$$
(A \times B)-(A \times C)
$$

$$
=\{(1,2),(1,3),(1,5),(1,7),(2,2),(2,3),(2,5),(2,7),(3,2),(3,3),(3,5),(3,7),(4,2),(4,3)
$$

$$
(4,5),(4,7),(5,2),(5,3),(5,5),(5,7),(6 \not 22),(6,3),(6,5),(6,7),(7,2),(7,3),(7,5),(7,7)\}
$$

$$
-\{(1,2),(2,2),(3,2),(4 \not \not 2),(5 \not 2),(6,2),(7,2)\}
$$

$$
=\{(1,3),(1,5),(1,7),(2,3),(2,5),(2,7),(3,3),(3,5),(3,7),(4,3),(4,5),(4,7)
$$

$$
\begin{equation*}
(5,3),(5,5),(5,7),(6,3),(6,5),(6,7),(7,3),(7,5),(7,7)\} . . \tag{2}
\end{equation*}
$$

From (1) and (2), $\boldsymbol{A} \times(\boldsymbol{B}-\boldsymbol{C})=(\boldsymbol{A} \times \boldsymbol{B})-(\boldsymbol{A} \times \boldsymbol{C})$
6. Represent each of the given relation by (a) an arrow diagram (b) a graph and (c) a set in roster form, wherever possible. (ii) $\{(x, y) \mid y=x+3, x, y$ are natural numbers $<10\}$
(ii) $\{(x, y) \mid y=x+3, x, y$ are natural numbers $<10\}$

Given, $x, y$ are natural numbers $<10$
$X=\{1,2,3,4,5,6,7,8,9\}, y=x+3$
Here $y_{1}=4, \quad y_{2}=5, \quad y_{3}=6$,
$y_{4}=7, \quad y_{5}=8, \quad y_{6}=9$
(a) Arrow diagram
(b) graph
(c) Roster Form
$R=\{(1,4),(2,5),(3,6)$, $(4,7),(5,8),(6,9)\}$
7. The data in the adjacent table depicts the length of a person forehand and their corresponding height. Based on this data, a student finds a relationship between the height $(y)$ and the forehand length $(x)$ as $y=a x+b$, where $a, b$ are constants. (i) Check if this relation is a function. (ii) Find $a$ and $b$ (iii) Find the height of a person whose forehand length is 40 cm (iv) Find the

| Length $x$ of <br> forehand (in cm) | Height ' $y^{\prime}$ <br> (in inches) |
| :---: | :---: |
| 35 | 56 |
| 45 | 65 |
| 50 | 69.5 |
| 55 | 74 | length of forehand of a person if her height is 53.3 inches. PTA-4

Given $y=a x+b$
(i) Arrow diagram

Each element in $x$ is associated with a unique element in $y$
Yes, this relation is a function
(ii) find $a$ and $b$

From the table
$35 a+\not b=56$ $\qquad$
$45 a+\not b=65$

$$
-1 \frac{(-) \quad(-) \quad(-)}{0 a \quad=-9} \begin{align*}
& a=\frac{9}{10}
\end{align*}=0.9
$$

$a=0.9$ substitute in (1)

$$
\begin{aligned}
& 35(0.9)+b=56 \\
& 31.5+b=56 \\
& b=56-31.5=24.5 \\
& \boldsymbol{a}=\mathbf{0 . 9} \text { and } \boldsymbol{b}=\mathbf{2 4 . 5}
\end{aligned}
$$

(iii) Length $=40 \mathrm{~cm}, a=0.9, b=24.5$

$$
\begin{aligned}
y & =a x+b \\
& =(0.9)(40)+24.5 \quad=60.5
\end{aligned}
$$

The height of a person whose forehand length is $40 \mathrm{~cm}=60.5$ inches.
(iv) Height $=53.3$ inches

$$
\begin{aligned}
& y=a x+b \\
& 53.3=(0.9) x+24.5=0.9 x+24.5 \\
& 53.3-24.5=0.9 x \\
& 28.8=0.9 x \\
& \quad x=\frac{28.8}{0.9}=32 \Rightarrow x=32 \mathrm{~cm}
\end{aligned}
$$

The length of forehand of a person $=32 \mathrm{~cm}$

# 1. Relations \& Functions - Important Questions $B$ 

8. A function $f:[-5,9] \rightarrow \mathbb{R}$ is defined as follows: $f(x)= \begin{cases}6 x+1 ; & -5 \leq x<2 \\ 5 x^{2}-1 ; & 2 \leq x<6 \\ 3 x-4 ; & 6 \leq x \leq 9\end{cases}$
Find (ii) $f(7)-f(1)$
(iv) $\frac{2 f(-2)-f(6)}{f(4)+f(-2)}$

$$
f(x)=\left\{\begin{array}{cc}
6 x+1 ; & -5 \leq x<2 \\
5 x^{2}-1 ; & 2 \leq x<6 \\
3 x-4 ; & 6 \leq x \leq 9
\end{array} \quad \text { Where } x=-5,-4,-3,-2,-1,0,1 ~ 子 \text { Where } x=2,3,4,5\right.
$$

(ii) $f(7)-f(1)$

When $x=7$

$$
\begin{aligned}
& f(x)=3 x-4 \\
& f(7)=3(7)-4=21-4=17
\end{aligned}
$$

When $x=1$

$$
\begin{aligned}
& f(x)=6 x+1 \\
& f(1)=6(1)+1=6+1=7 \\
& \\
& \therefore f(7)-f(1)=17-7=\mathbf{1 0}
\end{aligned}
$$

(iv) $\frac{2 f(-2)-f(6)}{f(4)+f(-2)}$

When $x=-2, f(x)=6 x+1$

$$
f(-2)=6(-2)+1=-12+1=-11
$$

When $x=6, f(x)=3 x-4$

$$
f(6)=3(6)-4=18-4=14
$$

When $x=4, f(x)=5 x^{2}-1$

$$
\begin{aligned}
& f(4)=5(4)^{2}-1=80-1=79 \\
& \frac{2 f(-2)-f(6)}{f(4)+f(-2)}=\frac{2(-11)-14}{79+(-11)}=\frac{-22-14}{79-11}=\frac{-36}{68}=-\frac{9}{17}
\end{aligned}
$$

9. The distance $S$ an object travels under the influence of gravity in the time $t$ seconds is given by $S(t)=\frac{1}{2} g t^{2}+a t+b$ where, ( $g$ is the acceleration due to gravity), $a, b$ are constants. Verify whether the function $S(t)$ is one-one or not.
Given $S(t)=\frac{1}{2} g t^{2}+a t+b \quad(a, b$ constants $)$
Now take $t=1,2,3, \ldots$ seconds

$$
\left.\left.\begin{array}{rl}
t=1, \quad S(1) & =\frac{1}{2} g(1)^{2}+a(1)+b \\
& =\frac{1}{2} g+a+b=\mathbf{0 . 5} \boldsymbol{g}+\boldsymbol{a}+\boldsymbol{b} \\
t=2, & S(2)
\end{array}\right)=\frac{1}{2} g(2)^{2}+a(2)+b\right)
$$

Since distinct elements of $A$ have distinct image in $B$.
Yes, it is an one-one function.
10. The function ' $t$ ' which maps temperature in Celsius ( $C$ ) into temperature in Fahrenheit $(F)$ is defined by $t(C)=F$ where $F=\frac{9}{5} C+32$. Find
(i) $t(0)$
(ii) $t(28)$
(iii) $t(-10)$
(iv) the value of $C$ when $t(C)=212$
(v) the temperature when the Celsius value is equal to the Fahrenheit value

The function $t$ is defined by, $t(C)=F$, where $F=\frac{9}{5} C+32$
(i) $t(0)=\frac{9}{5}(0)+32=\mathbf{3 2}^{\circ} \boldsymbol{F}$
(ii) $t(28)=\frac{9}{5}(28)+32$

$$
=9(5.6)+32
$$

$$
=50.4+32
$$

$$
=82.4^{\circ} \boldsymbol{F}
$$

(iii) $t(-10)=\frac{9}{5}(-10)+32$

$$
\begin{aligned}
& =-18+32 \\
& =\mathbf{1 4}^{\circ} \boldsymbol{F}
\end{aligned}
$$

(iv) When $t(C)=212$

$$
\begin{aligned}
\frac{9}{5} C+32 & =212 \\
\frac{9}{5} C & =212-32=180 \\
C & =\frac{180 \times 5}{9}=\mathbf{1 0 0}^{\circ} \mathbf{C}
\end{aligned}
$$

(v) we know that
$t(C)=F$ where $F=\frac{9}{5} C+32$
$t(F)=C$ where $C=\frac{9}{5} F+32$
If the temperatures are same then two ' $t$ 's in the formula should represent the same temperature. So then we multiply each side by $\left(-\frac{5}{4}\right)$

$$
t=\frac{9}{5} t+32^{\circ}
$$

$$
t-\frac{9}{5} t=32^{\circ}
$$

Multiply each side by $\left(-\frac{5}{4}\right)$

$$
\begin{aligned}
-\frac{5}{4}\left(t-\frac{9}{5} t\right) & =32^{\circ} \times\left(-\frac{5}{4}\right) \\
-\frac{5}{4} t+\frac{9}{4} t & =-40^{\circ} \\
\frac{-5 t+9 t}{4} & =-40^{\circ} \\
\frac{4 t}{4} & =-40^{\circ} \\
\boldsymbol{t} & =-40^{\circ}
\end{aligned}
$$

11. If $f(x)=x^{2}-1, g(x)=x-2$ find $a$, if $g \circ f(a)=1$

Given $f(x)=x^{2}-1, g(x)=x-2$
$g \circ f(x)=g(f(x))=g\left(x^{2}-1\right)$

$$
=x^{2}-1-2
$$

$$
=x^{2}-3
$$

Given $g \circ f(a)=1$
Hence $a^{2}-3=1$

$$
\begin{gathered}
a^{2}=1+3 \\
a^{2}=4 \\
\boldsymbol{a}= \pm \mathbf{2}
\end{gathered}
$$

12. If $f: R \rightarrow R$ and $g: R \rightarrow R$ are defined by $f(x)=x^{5}$ and $g(x)=x^{4}$ then check if $f, g$ are one-one and $f \circ g$ is one-one?
$f: R \rightarrow R$ defined by $f(x)=x^{5}$

$$
\begin{aligned}
f \circ f(x) & =f(f(x)) \\
& =f\left(x^{5}\right) \\
& =\left(x^{5}\right)^{5}=x^{25}
\end{aligned}
$$

$f \circ f(1)=(1)^{25}=1$
$f \circ f(2)=(2)^{25}$
$f \circ f(3)=(3)^{25}$
Since each elements in $f$ have distinct images, $f$ is one-one
$g: R \rightarrow R$ defined by $g(x)=x^{4}$

$$
\begin{aligned}
g \circ g(x) & =g(g(x))=g\left(x^{4}\right) \\
& =\left(x^{4}\right)^{4} \\
& =x^{16}
\end{aligned}
$$

$g \circ g(-1)=(-1)^{16}=1$
$g \circ g(1)=(1)^{16}=1$
$g \circ g(2)=(2)^{16}$
Thus two distinct elements -1
and 1 have same images.
Hence $g$ is not one-one

$$
\begin{aligned}
f \circ g(x) & =f(g(x)) \\
& =f\left(x^{4}\right) \\
& =\left(x^{4}\right)^{5}=x^{20} \\
f \circ g(1) & =(1)^{20}=1 \\
f \circ g(-1) & =(-1)^{20}=1
\end{aligned}
$$

Thus two distinct elements -1 and 1 have same
images. Hence $\boldsymbol{f} \circ \boldsymbol{g}$ is not one-one.
13. Consider the functions $f(x), \boldsymbol{g}(\boldsymbol{x}), \boldsymbol{h}(\boldsymbol{x})$ as given below, show that $(\boldsymbol{f} \circ \boldsymbol{g}) \circ \boldsymbol{h}=\boldsymbol{f} \circ(\boldsymbol{g} \circ \boldsymbol{h})$ in each case.
(iii) $f(x)=x-4, g(x)=x^{2}$ and $h(x)=3 x-5$

$$
\begin{aligned}
f \circ g(x) & =f(g(x)) \\
& =f\left(x^{2}\right)=x^{2}-4
\end{aligned}
$$

Then $(f \circ g) \circ h(x)=f \circ g(h(x))$

$$
\begin{align*}
& =f \circ g(3 x-5) \\
& =(3 x-5)^{2}-4 \\
& =9 x^{2}-30 x+25-4 \\
& =9 x^{2}-30 x+21 \ldots \ldots . . \tag{1}
\end{align*}
$$

$$
\begin{aligned}
(g \circ h) x & =g(h(x)) \\
& =g(3 x-5)=(3 x-5)^{2} \\
& =9 x^{2}-30 x+25
\end{aligned}
$$

$$
\begin{align*}
f \circ(g \circ h)(x) & =f\left(9 x^{2}-30 x+25\right) \\
& =9 x^{2}-30 x+25-4 \\
& =9 x^{2}-30 x+21 \ldots \ldots . . \tag{2}
\end{align*}
$$

From (1) and (2), $(\boldsymbol{f} \circ \boldsymbol{g}) \circ \boldsymbol{h}=\boldsymbol{f} \circ(\boldsymbol{g} \circ \boldsymbol{h})$

